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Abstract. We study the extreme-value statistics of 2D chaotic systems. We consider the
extreme value ofn phase space points of a 2D chaotic trajectory under a suitably defined norm
to order the points and calculate analytically its density. We find that the extreme-value density
is non-differentiable on a set of points and the number of such singular points increases withn.
However, for identically distributed independent 2D random variables the number of singular
points is independent ofn.

1. Introduction

Extreme-value statistics is the study of the distribution ofMn = max(X0, X1, . . . , Xn−1)

where{X0, X1, . . . , Xn−1} is ann-point sequence. IfF(x) is the cumulative distribution of
X,

F(x) = Prob(X 6 x) a 6 X 6 b (1)

then the cumulative distribution ofMn is given by

Fn(x) = Prob(X0 6 x,X1 6 x, . . . , Xn−1 6 x). (2)

If {X0, . . . , Xn−1} are independent and identically distributed random variables, then
Fn(x) = (F (x))n.

However, the limiting distribution (n → ∞) could be degenerate (i.e. distributed on
a single point) unless the extreme valuesMn, themselves are appropriately scaled. That
is, the limiting distribution of [anMn − bn] for some suitably chosen sequence ofan, bn
is non-degenerate. Surprisingly there exists only three classes of limiting distributions [1],
namely

G1,γ (x) = e−(−x)
γ

1(−∞,0](x)+ 1[0,∞)(x)

G2,γ (x) = e−x
γ

1[0,∞)(x)

G3,γ (x) = e−e−x1(−∞,∞)(x)

(3)

whereγ > 0 and the indicator function 1A(x) is defined as

1A(x) =
{

1 if x ∈ A
0 if x /∈ A.

(4)

This is due to the fact that extreme-value statistics is determined mainly by the tail of the
density of{Xi}, and the variations in the asymptotic behaviour of the densities are rather
restricted. This is in a sense similar to central limit theorem (CLT), where different densities,
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converge to a Gaussian density as a sum. This convergence is also decided by the tail part
of the density of the summands. In fact the necessary condition for the CLT is expressed
using the notion of regular variation at infinity [2], which also enters the extreme-value
statistics in a natural way.

The theory of extreme values was developed in [3–5]. For a recent review on this
subject, see [1]. Extreme events/values are important in many areas of physical and applied
sciences. For example, the breaking strength of a specimen is determined by its weakest
element. Flood is the maximum discharge of water from a river. Extreme behaviour is
also of interest in economics. For example, extreme yields may characterize the occurence
of bankruptcy or foreign exchange realignments. More recently, it has been applied to
diffusion process and economic modelling [6, 7].

The application of extreme-value statistics to 1D chaotic maps has been discussed in
[8]. In this work, they studied the distribution of the largest value of the iterates of a 1D
chaotic map. They showed that the density of such a variate is discontinuous on a set of
points belonging to the unstable periodic orbits of the map. In contrast, they showed that the
corresponding probability density for the largest value of the random processes is smooth.
Hence, it was pointed out that the deterministic nature of a chaotic process manifests itself
as discontinuities in the extreme-value density.

In this paper, we apply the theory of extreme values to 2D chaotic systems. The
motivation comes from the following considerations. The coexistence of periodic points of
different order (length of the period) and nature (attractive/repulsive) depends not only on
the class of the map, but also on the dimension of the space. For example, a diffeomorphism
in one dimension cannot have periodic points of order three or more, whereas inR2, it can
have periodic orbits of any order. It would be of interest to investigate the bearing of such
differences on the extreme-value statistics. Moreover, since there is no natural ordering in
higher dimensional spaces, one has to choose a norm for such order statistics. In principle
one can define many norms in a higher dimensional space. However, we choose in our
calculations, the norm defined as,

r = |x| + |y| = x + y since(x, y) ∈ [0, 1]× [0, 1] (5)

for analytical convenience and compare the results with those obtained by using the usual
Euclidean norm. Letρn(r) denote the density of the extreme value ofn 2D phase space
points, ordered under the norm defined by equation (5). We show that the extreme-value
density ρn(r) for 2D chaotic systems is non-differentiable on a set of points and the
cardinality of this set increases withn. The extreme-value density of 2D random process is
also non-differentiable on a set of points. However, the cardinality of the set is independent
of n, which distinguishes chaos from random processes.

2. 2D random process

Let {Xi} be independent and identically distributed random variables in [0,1]d , i.e. X =
(x1, x2, . . . , xd) is a d-dimensional vector. Let the norm be that of (5)

r = ‖X‖ =
d∑
i=1

xi. (6)

If P(r) is the probability density ofr andξl = max(r1, r2, . . . , rl) is the extreme value,
then the cumulative distribution ofξl is given by

Fl(ξ) = Prob(ξl 6 ξ). (7)
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One can show ifP(r) ∈ Cm, thenFl(ξ) ∈ Cm+1. The extreme-value distribution with
respect to the given norm is

Fl(ξ) = [F(ξ)]l l > 2 (8)

where

F(ξ) =
∫ ξ

0
P(r) dr. (9)

The derivative ofFl(ξ) gives the extreme-value density

ρl(ξ) = dFl(ξ)

dξ
= l[F(ξ)]l−1P(ξ). (10)

Consider the(m+ 1)th derivative ofFl(ξ),

dm+1

dξm+1
Fl(ξ) = l

m−1∑
j=0

mCj
dm−j

dξm−j
[F(ξ)]l−1 dj

dξ j
P (ξ). (11)

This involves only derivatives up to orderm of P(ξ), which implies if P(ξ) ∈ Cm, the
r.h.s. of equation (11) is finite andFl(ξ) ∈ Cm+1.

Thus, it is clear from (10) that if the invariant density of higher dimensional random
process is non-differentiable on a set of points, the extreme-value density is also non-
differentiable on the same set of points. In contrast, the extreme-value density of 1D
random process is smooth. It also follows from (10) that the number of non-differentiable
points in the extreme-value density is independent of length of the data set. For example,
theρn(r) of 2D random process with the invariant density of the components being uniform,
can be calculated exactly as

ρn(r) =


n

2n−1
r2n−1 06 r < 1

n

2n
(4r − r2− 2)n−1(4− 2r) 16 r < 2.

(12)

Figure 1 shows dρn(r)/dr for n = 2, 3 and 5. Theρn(r) of 2D random vectors is non-
differentiable atr = 1 for all n.

3. 2D chaotic systems

Consider a 2D sequenceXn = (xn, yn) of points generated by the map

xn+1 = fx(xn, yn)
yn+1 = fy(xn, yn).

(13)

Let ρ(x, y) be the invariant distribution of the system. The joint probability of the first
n values of the map withyi = ri − xi , is given by

ρ((x1, r1− x1), . . . , (xn, rn − xn)) =
∫

dx0

∫
dy0 ρ(x0, y0)

×
n∏

m=1

δ(xm − f (m)x (x0, y0))δ(rm − xm − f (m)y (x0, y0)) (14)

where(f (m)x (x0, y0), f
(m)
y (x0, y0)) is themth iterate of(x0, y0).
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Figure 1. The derivative of the extreme-value density of a 2D random process with respect to
a norm defined in equation (5), dρn(r)/dr (see equation (12)).

The cumulative distribution of the extreme value is given by

Fn(r) = Prob(r0 6 r, r1 6 r, . . . , rn 6 r)

=
∫

dx0

∫
dy0 ρ(x0, y0)

n∏
m=1

2(r − f (m)x (x0, y0)− f (m)y (x0, y0)). (15)

We calculate in the following sections,Fn(r) for 2D maps with uniform invariant
density. The analytical expressions forn = 2, is obtained where the integration is carried
out using a geometric construction.

The density functionρn(r) of the extreme values with respect to the norm defined is
obtained by differentiatingFn(r)

ρn(r) =
∫

dx0

∫
dy0 ρ(x0, y0)

n∑
m=1

∏
k 6=m

δ(r − f (m)x (x0, y0)− f (m)y (x0, y0))

×2(r − f (k)x (x0, y0)− f (k)y (x0, y0)). (16)

In general, the graph,f (m)x (x0, y0) + f (m)y (x0, y0) = r? in a unit square can be
discontinuous either at a point or across a line, depending on the map defined. If the
above line is discontinuous at a point, then the discontinuity gets smoothened by integration
and only the derivative ofρn(r) shows a discontinuity atr = r?. If the discontinuity is
across a line, thenρn(r) itself will be discontinuous atr = r?. We illustrate these features
below with examples.

The equation similar to (16) derived for 1D chaotic systems has contributions to the
integral whenf (m)(x0) = x0, which are the periodic points of the map. But in 2D,
the equationf (m)x (x0, y0) + f (m)y (x0, y0) = r does not correspond to a point. Instead it
corresponds to a line with respect to the chosen norm (5), or corresponds to a circle in the
case of Euclidean norm. Thus, the points of non-differentiability cannot be related to the
periodic points of the system.
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We present below the results obtained for two model chaotic maps in two dimensions
[9, 10], namely

(xn+1, yn+1) =


(

2xn,
yn

2

)
if 0 6 xn < 1

2(
2xn − 1,

yn + 1

2

)
if 1

2 6 xn < 1
(17)

known as Baker’s map and

(xn+1, yn+1) =
{
(xn + yn, xn) if 0 6 yn < 1− xn
(xn + yn − 1, xn) if 1 − xn 6 yn < 1.

(18)

The expression for cumulative probability distribution of the extreme value of a 2-point
data set is given by

F2(r) =
∫

dx0

∫
dy0 ρ(x0, y0)2(r − fx(x0, y0)− fy(x0, y0))

×2(r − f 2
x (x0, y0)− f 2

y (x0, y0)). (19)

As the invariant densityρ(x0, y0) is uniform the above integral can be simplified by
substituting forfx andfy in different ranges.

F2(r) =
∫ 1

4

0
dx0

∫ 1

0
dy02

(
r − 2x0− y0

2

)
2
(
r − 4x0− y0

4

)
+
∫ 1

2

1
4

dx0

∫ 1

0
dy02

(
r − 2x0− y0

2

)
2

(
r − 4x0+ 1− y0

4
− 1

2

)

+
∫ 3

4

1
2

dx0

∫ 1

0
dy02

(
r − 2x0+ 1− y0

2
− 1

2

)
2

(
r − 4x0+ 2− y0

4
− 1

4

)
+
∫ 1

3
4

dx0

∫ 1

0
dy02

(
r − 2x0+ 1− y0

2
− 1

2

)
2

(
r − 4x0+ 3− y0

4
− 3

4

)
.

(20)

Consider the first term in equation (20) and the integral in the range 06 r < 0.5 is the
area of ABCD in the figure 2, where line 1 and line 2 are 2x0+y0/2= r and 4x0+y0/4= r,
respectively.

F2(r) is obtained by integrating each of the term in (20) in different ranges ofr as
described above.ρ2(r) which is the derivative ofF2(r) is given by

ρ2(r) =



2r

3
06 r < 1

2
4r

3
− 1

3

1

2
6 r < 1

−2r

3
+ 5

3
16 r < 3

2

−4r

3
+ 8

3

3

2
6 r < 2.

(21)
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Figure 2. Diagram illustrating the evaluation of integral in
the first term of equation (23) in the range 06 r < 0.5.

A similar exercise has been carried out for the map defined in equation (18) and the
correspondingρ2(r) is

ρ2(r) =


r

2
06 r < 1

−3r

2
+ 3 16 r < 2.

(22)

The extreme-value density of a 2D chaotic mapρn(r) with respect to a defined normr
can also be numerically computed. Given a map with invariant density (mere existence is
necessary and sufficient to render meaning for the averaging procedure), the extreme-value
density can be computed in the following way. Starting from an initial condition,n iterates
(each being a 2D vector) of the map are obtained. These iterates are ordered based on a
norm and the maximum is thus picked up. This is repeated for several initial conditions to
obtain a histogram representingρn(r). The typical number of initial conditions used in the
computation ofρn(r) is 107. Numerically computedρn(r), n = 2, n = 3, n = 5 of Baker’s
map defined in (17) is shown in figure 3.ρ2(r) in figure 3 agrees with the analytical result
(21). Also, it can be seen that the number of non-analytic points ofρn(r) increases asn
increases. In contrast they remain constant in random processes, see figure 1. Thus, the
feature that distinguishes chaos from random process in higher dimension is theincreasein
the number of non-differentiable points ofρn(r) with n.

4. Discussion

The points of non-differentiability ofρn(r) of Baker’s map (17) arer = 1
2, 1 and3

2. Baker’s
map has two fixed points given by(0, 0) and (1, 1). The period-two points are( 1

3,
2
3) and

( 2
3,

1
3). The values of norm corresponding to the above periodic points arer = 0, 1 and 2.

It is clear that these points do not coincide with the points of non-differentiability ofρ2(r)

of Baker’s map. This is in contrast with the 1D case where the corresponding points belong
to the periodic orbits.
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Figure 3. Extreme-value densityρn(r) of Baker’s map with respect to norm defined in
equation (5).ρn(r) is non-differentiable on the set of points. Note that these points increase
with n (see equation (21) for the analytical expression).

Figure 4. Extreme-value densityρ2 of the map defined in equation (18) with respect to norm
defined in equation (5) and Euclidean norm (see equation (22) for analytical expression).

ρ2(r) of the map defined in (18) is shown in figure 4.ρ2(r) is discontinuous atr = 1.
One can show that the linef (2)x (x0, y0)+ f (2)y (x0, y0) = 1 is discontinuous across the lines
2x0+ y0 = 1, x0+ y0 = 1 and 2x0+ y0 = 2.

We numerically investigate the extreme-value statistics of 2D maps with respect to



8472 M C Valsakumar et al

Euclidean norm,rE =
√
x2+ y2. ρn(rE) is also non-differentiable on a set of points. These

points also increase withn and hence distinguish chaos from a random process. However,
the points of non-differentiability ofρn(rE) do not have one-to-one correspondence with the
non-differentiable points ofρn(r). For example,ρ2(rE) of the second system (18) shows
that ρ2(rE) is non-analytic at two points, but has no discontinuity. In contrast, theρ2(r)

of the same map is discontinuous atr = 1 which is the only non-differentiable point, see
figure 4.

5. Summary

In summary, the extreme-value density of 2D chaotic systems is calculated with respect
to a norm. ρn(r) is non-differentiable on a set of points which do not belong to the
periodic orbits of the system. However, we believe that these points are related to the
unstable periodic orbits in some non-trivial fashion. It would be of interest to find out such
a relation through some variant of this analysis. The number of such non-differentiable
points ofρn(r) increases withn. In contrast, the number of points of non-differentiability
of two- and higher-dimensional random processes does not increase withn. This feature in
the extreme-value density distinguishes chaos from random processes in higher dimensions.
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